An Elliptic Integral Identity

By M. L. Glasser

Abstract. The definite integral

$$
\int_{0}^{\infty}\left[\frac{\left(x^{2}+a^{2}\right)^{1 / 2}-a}{x^{2}+a^{2}}\right]^{1 / 2} K\left[\frac{\left(x^{2}+b^{2}\right)^{1 / 2}-b}{\left(x^{2}+b^{2}\right)^{1 / 2}+b}\right] \frac{d x}{\left(x^{2}+b^{2}\right)^{1 / 2}+b}
$$

is evaluated in closed form.

The following interesting integral does not appear to fit into the standard theory of elliptic integrals:

$$
\begin{equation*}
I=\int_{0}^{\infty}\left[\frac{\left(x^{2}+a^{2}\right)^{1 / 2}-a}{x^{2}+a^{2}}\right]^{1 / 2} K\left[\frac{\left(x^{2}+b^{2}\right)^{1 / 2}-b}{\left(x^{2}+b^{2}\right)^{1 / 2}+b}\right] \frac{d x}{\left(x^{2}+b^{2}\right)^{1 / 2}+b} \tag{1}
\end{equation*}
$$

where $K(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} d \theta$ is the complete elliptic integral of the first kind.
To evaluate (1), we note that [1] for $\operatorname{Re} a \geqq 0$,

$$
\left[\frac{\left(x^{2}+a^{2}\right)^{1 / 2}-a}{x^{2}+a^{2}}\right]^{1 / 2}=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{\infty} e^{-a y} y^{-1 / 2} \sin x y d y
$$

Thus, since the order of integration can be reversed, after a simple change of variables, we have

$$
\begin{equation*}
I=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{\infty} d y e^{-a y} y^{-1 / 2} \int_{0}^{\infty} d x \frac{\sin (x y b)}{\left(x^{2}+1\right)^{1 / 2}+1} K\left[\frac{\left(x^{2}+1\right)^{1 / 2}-1}{\left(x^{2}+1\right)^{1 / 2}+1}\right] \tag{2}
\end{equation*}
$$

Next, we note that

$$
\left[\left(x^{2}+1\right)^{1 / 2}-1\right] /\left[\left(x^{2}+1\right)^{1 / 2}+1\right]=[(z-1) /(z+1)]^{1 / 2}
$$

where

$$
z=\left(x^{2}+2\right) / 2\left(x^{2}+1\right)^{1 / 2}
$$

Since [2]

$$
K\left([(z-1) /(z+1)]^{1 / 2}\right)=2^{-3 / 2} \pi(z+1)^{1 / 2} P_{-1 / 2}(z),
$$

we obtain

$$
\begin{equation*}
I=2^{-3 / 2} \pi^{1 / 2} \int_{0}^{\infty} d y e^{-a y} y^{-1 / 2} \int_{0}^{\infty} d x \frac{\sin (x y b)}{\left(x^{2}+1\right)^{1 / 4}} P_{-1 / 2}\left[\left(x^{2}+2\right) / 2\left(x^{2}+1\right)^{1 / 2}\right] \tag{3}
\end{equation*}
$$

Now the x-integration can be rewritten as a tabulated Hankel transform [3] and we find

$$
\int_{0}^{\infty}\left(x^{2}+1\right)^{-1 / 4} P_{-1 / 2}\left[\left(x^{2}+2\right) / 2\left(x^{2}+1\right)^{1 / 2}\right] \sin (x t) d x=I_{0}(t / 2) K_{0}(t / 2)
$$

Received October 22, 1970.

AMS 1970 subject classifications. Primary 33A25.
Key words and phrases. Definite integral, complete elliptic integral.
so (3) becomes

$$
\begin{equation*}
I=\frac{1}{2}(\pi / 2)^{1 / 2} \int_{0}^{\infty} d y y^{-1 / 2} e^{-a y} I_{0}(b y / 2) K_{0}(b y / 2) \tag{4}
\end{equation*}
$$

The integral in (4) is of a type considered by Bailey [4], and from his results we have

$$
\int_{0}^{\infty} t^{-1 / 2} I_{0}(\lambda t) K_{0}(\lambda t) e^{-t} d t=2(c / \pi)^{1 / 2} \operatorname{sech}^{2} \alpha K(\operatorname{sech} \alpha) K(\tanh \alpha)
$$

where

$$
c=\left(2 \lambda^{2}\right)^{-1}\left[1-\left(1-4 \lambda^{2}\right)^{1 / 2}\right], \quad \cosh \alpha=2^{-1 / 2}\left[1+\left(1+\lambda^{2} c^{2}\right)^{1 / 2}\right]^{1 / 2}
$$

Thus

$$
I=b^{-1}\left[a-\left(a^{2}-b^{2}\right)^{1 / 2}\right]^{1 / 2} \operatorname{sech}^{2} \alpha K(\operatorname{sech} \alpha) K(\tanh \alpha)
$$

where

$$
\cosh \alpha=(2 b)^{-1 / 2}\left\{b+\left[2 a^{2}-2 a\left(a^{2}-b^{2}\right)^{1 / 2}\right]^{1 / 2}\right\}^{1 / 2},
$$

and the result is valid for $\operatorname{Re} a \geqq \operatorname{Re} b>0$.

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201

1. A. Erdélyi et al., Tables of Integral Transforms. Vol. I, McGraw-Hill, New York, 1954, p. 72, Equation (4). MR 15, 868.
2. M. Abramowitz \& I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, p. 337. MR 29 \#4914.
3. A. Erdélyi et al., Tables of Integral Transforms. Vol. II, McGraw-Hill, New York, 1954, p. 45, Equation (6). MR 16, 468.
4. W. N. Balley, J. London Math. Soc., v. 11, 1936, p. 16.
